Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.18.464900

ABSTRACT

Using an unbiased interrogation of the anti-viral memory B cell repertoire of convalescent COVID-19 patients, we identified three human antibodies that when combined demonstrated both robust viral suppressive properties against all tested SARS-CoV-2 variants of concern in vitro and profound anti-viral efficacy in vivo. In this report, we describe the pre-clinical characterization of an antibody cocktail, IMM-BCP-01, that consists of three unique, patient-derived recombinant antibodies directed at non-overlapping surfaces on the Spike protein, each with particularly effective antiviral activity. One antibody has a composite epitope blocking ACE2 binding, one antibody bridges two Spike proteins, and one antibody neutralizes virus by binding to a conserved epitope outside of ACE2 binding site. These antibodies, when administered after viral infection, potently decreased viral load in lungs of infected Syrian golden hamsters in a dose-dependent manner, elicited broad anti-viral neutralizing activity against multiple SARS-CoV-2 variants, and induced a robust anti-viral effector function response, including phagocytosis, and activation of classical complement pathway. Our pre-clinical data demonstrate that the unique three antibody cocktail IMM-BCP-01 is a potent and dose-efficient approach to treat early viral infection and prevent SARS-CoV-2 in susceptible individuals.


Subject(s)
Lung Diseases , Virus Diseases , COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.27.428534

ABSTRACT

Patients who recover from SARS-CoV-2 infections produce antibodies and antigen-specific T cells against multiple viral proteins. Here, an unbiased interrogation of the anti-viral memory B cell repertoire of convalescent patients has been performed by generating large, stable hybridoma libraries and screening thousands of monoclonal antibodies to identify specific, high-affinity immunoglobulins (Igs) directed at distinct viral components. As expected, a significant number of antibodies were directed at the Spike (S) protein, a majority of which recognized the full-length protein. These full-length Spike specific antibodies included a group of somatically hypermutated IgMs. Further, all but one of the six COVID-19 convalescent patients produced class-switched antibodies to a soluble form of the receptor-binding domain (RBD) of S protein. Functional properties of anti-Spike antibodies were confirmed in a pseudovirus neutralization assay. Importantly, more than half of all of the antibodies generated were directed at non-S viral proteins, including structural nucleocapsid (N) and membrane (M) proteins, as well as auxiliary open reading frame-encoded (ORF) proteins. The antibodies were generally characterized as having variable levels of somatic hypermutations (SHM) in all Ig classes and sub-types, and a diversity of VL and VH gene usage. These findings demonstrated that an unbiased, function-based approach towards interrogating the COVID-19 patient memory B cell response may have distinct advantages relative to genomics-based approaches when identifying highly effective anti-viral antibodies directed at SARS-CoV-2.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL